The great thing about the Internet is that one can discover unexpected uses of familiar techniques. Or one can search for new applications with one's tool set. So what about SUR and lamb carcasses?
Vasco Cadavez and Arne Henningsen are responsible for this paper. I have nothing to add to the abstract: The aim of this study was to develop and evaluate models for predicting the carcass composition of lambs. Forty male lambs of two different breeds were included in our analysis. The lambs were slaughtered and their hot carcass weight was obtained. After cooling for 24 hours, the subcutaneous fat thickness was measured between the 12th and 13th rib and the total breast bone tissue thickness was taken in the middle of the second sternebrae. The left side of all carcasses was dissected into five components and the proportions of lean meat, subcutaneous fat, intermuscular fat, kidney and knob channel fat, and bone plus remainder were obtained. Our models for carcass composition were fitted using the SUR estimator which is novel in this area. The results were compared to OLS estimates and evaluated by several statistical measures. As the models are intended to predict carcass composition, we particularly focused on the PRESS statistic, because it assesses the precision of the model in predicting carcass composition. Our results showed that the SUR estimator performed better in predicting LMP and IFP than the OLS estimator. Although objective carcass classification systems could be improved by using the SUR estimator, it has never been used before for predicting carcass composition.
Thanks for advertising our paper :-)
ReplyDelete/Arne